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Abstract The equations of General Relativity are non-linear. This makes their averaging non-trivial. The
notion of mean gravitational field is defined and it is proven that this field obeys the equations of General
Relativity if the unaveraged field does. The workings of the averaging procedure on Maxwell’s field and on
perfect fluids in curved space-times are also discussed. It is found that Maxwell’s equations are still verified
by the averaged quantities but that the equation of state for other kinds of matter generally changes upon
average. In particular, it is proven that the separation between matter and gravitational field is not scale-
independent. The same result can be interpreted by introducing a stress-energy tensor for a mean-vacuum.
Possible applications to cosmology are discussed. Finally, the work presented in this article also suggests
that the signature of the metric might be scale-dependent too.

PACS. 04.20.Cv Fundamental problems and general formalism 04.40.Nr Einstein-Maxwell spacetimes,
spacetimes with fluids, radiation or classical fields – 95.35.+d Dark matter (stellar, interstellar, galactic,
and cosmological)

Notations

In this article, space-time indices running from 0 to 3 will
be indicated by Greek letters. The metric signature will be
(+,−,−,−). I also have chosen, as a rule, not to use the
so-called intrinsic notation in differential geometry and to
stick to the notation standard in physics, which denotes
every tensor by its components.

1 Introduction

Every observation of any system is necessarily finite i.e.
the state of a given system is always represented by a
finite number of variables, measured to a certain, finite
precision. The nature of these variables, their number and
the precision to which they are measured all vary with
the retained experimental procedure. A given system is
therefore generally susceptible of different, equally valid
descriptions and building the bridges between those dif-
ferent descriptions is the task of statistical physics. Let
me mention two historically famous examples.

A complete non-quantum theory of electromagnetic
phenomena in continuous media can in principle be ob-
tained by viewing the continuous media as made up of a
great number of point-like charges; these define a charge
and a charge current density which generate, via Maxwell
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equations, the electromagnetic field through which the
particles interact. The real electromagnetic field varies
therefore at both macroscopic and microscopic scales. To
obtain from this description a reasonable model of what
happens at macroscopic scales only, one usually defines a
suitable averaging procedure (which has been historically
introduced as a cutoff in Fourier-space for large ‘wave-
vectors’ i.e. small wave-lengths); one thus obtains an av-
erage electromagnetic field and its average sources, which
vary on macroscopic scales only [19,24]. Because the origi-
nal field and the corresponding sources are linked by linear
relations (i.e. Maxwell equations), their averages will be
linked by the same relations. Maxwell equations are there-
fore valid both microscopically and macroscopically [24].

The other example is classical fluid dynamics, which
is susceptible of at least three substantially different de-
scriptions. Fundamentally, a non-quantum Galilean fluid
can be viewed as a collection of point-like particles in in-
teraction, the evolution of which obeys the laws of classi-
cal mechanics. On microscopic scales of the order of the
mean free-path and the mean collision time between the
particles, the state of a sufficiently diluted fluid can be
described by a distribution function in one-particle phase-
space and this distribution obeys a transport equation,
typically the Boltzmann equation [17]. It turns out that
the macroscopic behaviour of slowly varying solutions to
the Boltzmann equation can be efficiently modelled by
the Navier-Stokes system, the state of the fluid being
now represented by a density field, a velocity field and
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another, thermodynamical field like the temperature [17].
Of course, the equations of motion have to be comple-
mented by an equation of state, which links the various
thermodynamical quantities to the density of the fluid;
the equation of state must also be obtained by statistical
analysis.

Let us spend some more time commenting on the
Navier-Stokes model. A solution to the Navier-Stokes sys-
tem corresponding to a turbulent flow will have a broad
spectrum in Fourier space and so will probably a typical
solution, varying notably on more than just one macro-
scopic scale [11,25]. Let us suppose for a moment, as an
approximation, that a particular solution features only
two variation scales, say L1 and L2, L1 � L2. Both of
them are macroscopic but suppose that, for some reason,
one is interested in finding an approximate description of
the flow at scale L2 only. One can introduce a suitable
averaging procedure which furnishes, from the ‘real’ den-
sity, velocity field and temperature field of the fluid, new
fields which vary only at scale L2. The important point
is that, generally speaking, these fields do not verify a
system similar to the original Navier-Stokes system. In
particular, the Navier-Stokes equation is in general not
verified by the averaged fields [11]. This is due to the non-
linearity of the original Navier-Stokes system. This kind
of problem is not encountered when building a theory of
electromagnetic phenomena in continuous media because
Maxwell’s equations are linear. The changes which appear
in the Navier-Stokes hydrodynamical model are naturally
linked to the centuries-old concept of eddy viscosity [11]
and to the more modern one of renormalisation group [6].
Some interesting examples of actual analytical results and
experimental confirmations can be found in [11].

In discussing both examples, I have tacitly assumed
that the space-time was flat (or even non relativistic).
Physicists now know how to lift this constraint and to
implement the principles of statistical physics in a curved
space-time background [18]. But a really general statistical
physics in curved space-time should consider all degrees of
freedom as susceptible of a statistical description. In other
words, the gravitational field itself should be treated as a
statistical quantity and one should be able, when needed,
to average over various space-time curvatures as well as
over different states of the ‘matter’1 present in space-time.
The main difficulty comes from the non-linear character
of the fundamental equations of General Relativity. This
question is clearly of great theoretical or conceptual im-
portance but its practical significance in astrophysical and
cosmological applications cannot be overstressed either.
For example, observational data seem to indicate that, on
large scales, the universe is homogeneous and isotropic
and, indeed, practically every calculation made in cosmol-
ogy since the advent of General Relativity has assumed
that it was possible to model the large-scale evolution of
the universe by a spatially homogeneous isotropic solu-
tion to the equations of General Relativity [21,28]. Such

1 This term is used here in its standard relativistic meaning;
‘matter’ thus represents all degrees of freedom but those of the
gravitational field.

a solution is meant to represent the mean gravitational
field in the universe. But the whole procedure presup-
poses the possibility of defining a mean gravitational field
which obeys the same evolution equations as the ‘real’
field, namely the fundamental equations of General Rela-
tivity. Since these equations are non-linear, it is not self-
evident that this can be done. Even if one admits this
task can nevertheless be accomplished by a suitable av-
eraging procedure, taking averages a priori changes the
equation of state of the matter present in the universe,
e.g. its energy-momentum tensor, and to know how is also
a clear priority of cosmology.

Various possible ways of averaging the geometry of
space-time have already been proposed [4,5,12–14,20,31],
but none of them seems fully satisfactory2. The aim of this
article is to prove that there is a natural, physically mean-
ingful way to average the Einstein gravitational field and
that the procedure automatically ensures that the mean
field also obeys the equations of General Relativity. As
mentioned earlier, the equation of state for the matter
present in space-time is changed by the averaging and this
problem is also investigated. The material is organized as
follows. Section 2 fixes the frame for the rest of the arti-
cle by discussing the various notions of averaging that are
commonly used in physics; of all the possibilities, the most
general and practical one is certainly statistical averaging
and the statistical approach is therefore retained for the
remainder of this work. The statistical ensembles which
are to be used in the general relativistic case are ensem-
bles of space-times (or histories) and this is also discussed
in Section 2. Section 3 proposes, as a case study, a brief
review of how the selected averaging procedure works on
Maxwell’s equations in flat space-time. Section 4 presents
the fundamental equations to be averaged. These are Ein-
stein’s equation, the equation expressing the compatibility
of the metric and the connection and, finally, the equations
of motion for the matter present in space-time. To keep
the discussion focused, only two forms of matter are inves-
tigated, a (possibly charged) perfect fluid and Maxwell’s
electromagnetic field; the extension of the present work
to other forms of matter is rapidly discussed in the con-
clusion. In Sections 5 and 6, the mean fields are defined
as averages of various quantities and the evolution equa-
tions for these mean fields are also deduced. It is shown
that defining the mean metric to be the average of the
original metric and the mean connection to be the con-
nection compatible with the mean metric leads to a mean
gravitational field which obeys the equations of General
Relativity.

Corresponding changes in the equations of motion and
the equation of state of the matter present in space-time
are also investigated in Section 6; in particular, the av-
eraging of Maxwell’s equations is not a trivial problem
when the metric is itself a statistical variable. I propose a
definition for the mean electromagnetic field that ensures
that this field verifies Maxwell’s equations. The averaging
of the total stress-energy tensor and of the total charge
4-current are also discussed. Various notable conclusions

2 See Section 7 for a full discussion of these references.
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are reached; the first one is that the notion of perfect fluid
is not scale-invariant. More generally, I also prove that the
separation between gravitational field and matter is itself
not scale-invariant. The same goes for the distinction be-
tween electric charge and electromagnetic field. These new
effects are due to the non-linearity of the various equations
of motion and appear only if the metric of space-time is
itself a non-constant statistical variable. They disappear
if the statistics are made in space-times corresponding to
one and the same metric. These effects can also be inter-
preted by introducing a scale-dependent stress-energy and
charge 4-current for the ‘vacuum’; this point of view is less
general than the preceding one but seems to be more in
tune with the usual language of modern cosmology. Both
interpretations are discussed in Section 6. As a conclu-
sion, Section 7 reviews the work presented in this article
and lists some possible extensions and applications. The
differences between the approach presented in this article
and those introduced in earlier references are also system-
atically discussed. It is shown that the previous averaging
methods are either less general or not as physically and
geometrically natural and meaningful as the framework
developed in the present article.

2 General framework for the averaging
procedure

There are essentially three different notions of averag-
ing (or coarse graining) which are currently used in non-
quantum physics. The first one consists in averaging a field
by convoluting it with a specified ‘window function’ [19].
The second technique consists in adding variables to those
of the original field, distinguishing then between the so-
called slow and rapid variables; the average is then defined
as an average over the rapid variables. This technique is
most commonly used in dynamical systems theory, for ex-
ample in studying turbulence [11]. Finally, one can also in-
troduce Gibbs statistical ensembles and define the average
as an average over the various members of these ensem-
bles [15]. It is well known that, at least in Galilean physics,
this third notion of average is more computationally con-
venient and more general than the other two, which it
can accommodate as special cases. Thus, I have decided
to work only with statistical averages for the rest of this
article. Let us therefore spend some more time on defining
them properly in a general relativistic context.

I would like to start this discussion with a brief review
of the Galilean case. For any given scale conveniently rep-
resented by the symbol a, the evolution of a given sys-
tem at scales larger than or comparable to a is defined by
a set of differential equations which are verified by vari-
ous variables, the nature and number of which depend on
the scale a under consideration; in particular, the retained
variables and their number may or may not be the same
for various scales a.

Suppose now we have at our disposal a description
of the system under consideration valid at scales larger
than a given scale a, considered as ‘microscopic’ (but

which may be in fact macroscopic with respect to some
other scale) and that we now wish to obtain a correct,
albeit less complete, description of the same system valid
at scales larger than b, where b is much larger than a
and defines the ‘macroscopic’ scale. In Galilean statisti-
cal physics, the natural notions to be used in this context
are those of macroscopic and microscopic states, which
have nearly obvious definitions. One can then define the
mean value taken by an arbitrary microscopic quantity in
a given macroscopic state of the system as the statistical
average of this quantity over an ensemble of microscopic
states which all correspond to this macroscopic state. This
mean value is then identified to a macroscopically measur-
able quantity. In the Galilean case, Gibbs statistical en-
sembles are thus ensembles of micro-states corresponding
to one and the same macro-state.

We now want to define a suitable relativistic general-
ization of these usual Galilean Gibbs ensembles. This is
not a trivial problem. Indeed, it has already been noted
that the concept of state itself is not a relativistic invariant
notion [8]; statistical ensembles of states are therefore not
relativistic invariants either and cannot be used in a con-
sistent way to do statistical physics in Special or General
Relativity. The remedy to this situation is to replace the
concept of state by the notion of history and the ensem-
bles of states by ensembles of histories, which specify the
local state of the system at every point in space-time [8].
In [8], the notion of history has been used in the special
relativistic context only. Let me therefore introduce it now
in the general relativistic context.

In both Special and General Relativity, a macro-
history is defined by the values taken by all macroscopic
variables (‘geometric’ and ‘non-geometric’ ones) at ev-
ery point of the space-time manifold. Similarly, a micro-
history is defined by the values taken by all microscopic
(‘geometric’ and ‘non-geometric’) variables at every point
of space-time. A given macro-history is put into correspon-
dence with an ensemble of micro-histories, over which any
desired quantity can be averaged in a completely covari-
ant manner. To put it slightly differently, each member
of the statistical ensemble under consideration (i.e. each
micro-history) is a space-time manifold; this manifold is
endowed with a metric and the connection compatible
with it (see below, Sect. 4.1.1); the metric and the con-
nection of each member of the ensemble satisfy Einstein’s
equation, with a stress-energy tensor corresponding to a
microscopic description of the matter in the space-time.
The macro-history corresponds to a mean space-time. The
central aim of this article is to explain precisely how the
‘macroscopic’ properties of this mean space-time emerge
by averaging over the various members of the ensemble.
More precisely, it will be shown that it makes physical
and mathematical sense to define the mean metric over
the mean space-time as the average of the metric over all
members (space-times) in the ensemble. The mean met-
ric is then compatible with a mean connection, which is
also defined as the average of a certain ‘microscopic’ field.
This field does not coincide with the ‘microscopic’ connec-
tion. Finally, it will be shown that the mean metric and
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connection satisfy Einstein’s equations with a mean stress-
energy tensor which also appears as a statistical average
over the ensemble of space-times.

A final word about the notation: it will be convenient
to introduce a parameter ω ∈ Ω which labels the vari-
ous members of a given statistical ensemble; averages over
these ensembles will be denoted by using angular brackets.

3 A case study: Maxwell’s equation in flat
space-time

3.1 Basic equations

Maxwell’s electromagnetism is a Yang-Mills gauge the-
ory. The standard choice for the gauge field is the 4-
potential Aµ, which appears as an element of the bundle
cotangent to space-time [9]. In other words, the 4-potential
is naturally a covariant 4-vector field. One can introduce
the so-called ‘curvature’ form of A, characterized by the
tensor F :

Fµν = ∂µAν − ∂νAµ. (1)

F is naturally a twice covariant tensor field on space-time.
A direct consequence of (1) is:

∂[αFµν] = 0, (2)

where the brackets denote total antisymmetrization. This
is the first pair of Maxwell’s equations. The second pair
links the tensor F to its source, which is characterized by
a tangent vector field j. One has:

ηνα∂αFµν = −4πηµνjν , (3)

where η denotes the standard Minkowski metric. As
noted by Maxwell himself, equation (3) implies charge
conservation:

∂µjµ = 0. (4)

An electromagnetic field acts on point charges and,
more generally, on any current distribution. The motion
of a point-like particle can be characterized by a tra-
jectory, Xµ(s), parametrized by its proper-time s. The
4-velocity U of the particle is defined to be Uµ = dXµ/ds
and is therefore a vector tangent to space-time, carrying
naturally one contravariant index. On the contrary, what
can be called the physical momentum of the particle is
naturally an element of the cotangent space [18] and its
components are linked to those of U by Pµ = mηµνUν

(Pµ thus defined is not the canonical momentum of a
point particle moving in a given electromagnetic field [2]).
The equation of motion of a point charge q of mass m
under the action of an electromagnetic field represented
by F reads:

dPµ

ds
= qFµνUν . (5)

This equation can be cast into a somewhat different, more
general form, by introducing the 4-current density jP and

the stress-energy tensor TP associated to the point parti-
cle. In any Lorenz frame, one can write:

jµ
P (x) =

q

U0(σ(x))
δ(3)(x − X(σ(x))) Uµ(σ(x)), (6)

where σ(x) is the proper-time defined by X0(σ(x)) = x0.
In the same way:

T ν
Pµ =

1
U0(σ(x))

δ(3)(x − X(σ(x))) Pµ(σ(x)) Uν(σ(x))

(7)
and (5) can be rewritten as [23]:

∂νT ν
Pµ = Fµνjν

P . (8)

This equation is actually valid for an arbitrary charge dis-
tribution j associated to a stress-energy tensor3 T ; one
thus has, quite generally:

∂νT ν
µ = Fµνjν . (9)

Note that the choice of the mixed components of T is also
quite natural in the present context. Indeed, one can de-
fine, for an arbitrary submanifold of dimension 3 in space-
time, the following surface element [9]:

dSµ =
1
3!

εµναβ dxν ∧ dxα ∧ dxβ , (10)

which appears naturally as a covariant vector valued
one-form; the quantities T ν

µ dSν then represent the 4-
momentum present in the ‘surface’ element dS; these con-
stitute a covariant vector, like any naturally defined mo-
mentum.

3.2 The averaging

Let now A(x, ω), F (x, ω), j(x, ω) correspond to a certain
ensemble of micro-histories, ω serving as a label for the
different micro-histories in the ensemble. We want to de-
fine a mean 4-potential Ā(x), a mean tensor F̄ (x), and a
mean current density j̄(x) as averages over the considered
ensemble.

Historically, the mean electromagnetic field has always
been defined by averaging the effect of the real field on test
particles. In more general terms, we will define the mean
tensor F̄ by averaging the effect of the real tensor F (ω) on
test current distributions; by equation (9), this effect takes
the form of a divergence of the stress-energy momentum
tensor. Let us examine this point more closely, keeping
in mind that the discussion will have to be extended to
curved space-times (see Sect. 5.1).

Let F be an arbitrary foliation of space-time i.e. an ar-
bitrary family of 3-dimensional submanifolds Σ’s of space-
time, independent of ω, such that every point x in space-
time belongs to one and only one submanifold in the
family; let Σ(x) denote the submanifold containing

3 For example, j and T can be the current and stress-energy
tensor associated to a classical Klein-Gordon or Dirac field.
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point x. Such a foliation F can be defined in both flat
and curved space-times. In curved space-times, it can be
used as a generalization of the family of constant-time hy-
persurfaces in Minskovski (flat) space-time. Note that the
constant-time hypersurfaces in Minkovski space-time are
all space-like but that nothing of the sort has been spec-
ified for the Σ’s. This is because the space-like nature of
a submanifold depends on the metric; imposing the Σ’s
to be necessarily space-like for all metrics in the statisti-
cal ensembles we will be considering in the next sections
would thus be very restrictive. It turns out that this re-
striction is actually unnecessary and this is why it has not
been retained in the general definition of F .

Let now x be an arbitrary point in space-time. We want
to fix to a quantity independent of ω the value taken by
the current-distribution jtest of the test matter at points y
on Σ(x) around x. Let therefore ι be a field of vectors tan-
gent to space-time, independent of ω, defined over some
neighborhood D of x, D ⊂ Σ(x). We will fix the test
current-distribution on Σ(x) around x by imposing:

jµ
test(y, ω) = ιµ(y) (11)

for all ω and all y ∈ D. We also want to specify, in a
similar way, the value taken by the stress-tensor of the
test matter at all points in D. We therefore introduce a
field θµν , defined only on D and independent of ω; and we
impose4:

T ν
testµ (y, ω) = gµα(y, ω) θαν(y) (12)

for all ω and all y ∈ D. This equation will not be used
in the present Section but is also necessary to address the
averaging problem in curved space-time. This is why the
general form g(y, ω) has been retained in (12) instead of
the simpler flat space-time Minkowski metric η.

Having fixed the value of the test current-distribution
on D, one can then write (see (9)), for all ω and all y ∈ D:

∂νT ν
µ (ω)|y = Fµν(y, ω) ιν(y), (13)

Equation (13), combined with the ‘initial condition’ (12),
entirely determines the rate of change5 of the stress-tensor
of the test current distribution in all directions and, in
particular, in the direction normal to Σ(x) at y.

In a less general and more physically oriented lan-
guage: if F is the family of constant-time hypersurfaces
in Minkowski space-time and x = (ct,x), the field ι rep-
resents the value of the test current distribution jtest at
time t. The value of the stress-tensor Ttest at time t is θ.
Equation (13) determines the rate of change at time t
of the stress-tensor T of the test current-distribution i.e.
∂T/∂t.

4 The reason for using these components and not other com-
ponents of θ will become apparent in Section 5.1.

5 Mathematically speaking, equation (13) determines a jet of
tensor-fields at y.

Equation (13) can be written at point x and averaged
over ω to give:

〈∂νT ν
µ (ω)|x〉 = 〈Fµν(x, ω)〉 ιν(x), (14)

which prompts the following definition for F̄ :

F̄µν(x) = 〈Fµν(x, ω)〉. (15)

Combining (15) and (1), one can write:

F̄µν = ∂µĀν − ∂νĀµ, (16)

where the mean 4-potential is simply defined as the aver-
age of the original A:

Āµ(x) = 〈Aµ(x, ω)〉. (17)

The first pair of Maxwell’s equations (2) is then automat-
ically verified by F̄ and the second pair (3) is also verified
by the couple (F̄ , j̄) where j̄ is defined as the average of
the original 4-current:

j̄µ(x) = 〈jµ(x, ω)〉. (18)

This completes the averaging procedure of Maxwell’s
equations in flat space-time. As can be seen from the pre-
ceding discussion, these equations are clearly invariant un-
der statistical average.

4 The equations to be averaged in curved
space-time

4.1 A formalism for General Relativity

4.1.1 The gravitational field

General Relativity [9,30] views space-time as a 4-
dimensional (real) manifold with coordinates (xµ), µ =
0, 1, 2, 3. This manifold is supposed to be endowed with
two structures. The first one is a metric g, which is a
second-order invertible tensor field. The metric defines the
so-called line-element:

ds2 = gµνdxµdxν . (19)

It can also be used to transform contravariant (tangent)
vectors into covariant (cotangent) ones and vice-versa.
More generally, it can be used to ‘lower’ indices or ‘raise’
them. In particular, if we denote the inverse to gµν by gµν ,
one has:

gµαgαν = gν
µ = δν

µ, (20)

where δ is the usual 4-dimensional Kronecker symbol. The
metric of General Relativity is supposed to be Lorentzian,
of signature (+,−,−,−).

The second structure defined on space-time is an
affine connection, which itself defines a so-called covariant
derivative operator. The connection can be represented
by a set of real-valued functions which will be noted Γ α

µν .
This set of functions does not constitute a tensor field. The
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transformation law of these functions under a change of
coordinate system is however perfectly known and reads,
with obvious notations:

Γ α′
µ′ν′ = Γ α

µν

∂xα′

∂xα

∂xµ

∂xµ′
∂xν

∂xν′ +
∂2xβ

∂xµ′∂xν′
∂xα′

∂xβ
. (21)

We will denote by ∇(Γ ) the covariant derivative (oper-
ator) associated to the functions Γ α

µν . One thus has, for
example:

∇µ(Γ )V ν =
∂V ν

∂xµ
+ Γ ν

µαV α, (22)

where V is an arbitrary (contravariant) vector field on
space-time. The covariant derivative of vectors cotangent
to space-time is defined by:

∇µ(Γ )Wν =
∂Wν

∂xµ
− Γ α

µνWα. (23)

The transformation law (21) ensures that ∇µ(Γ )V ν and
∇µ(Γ )Wν are second order tensor fields on space-time.
The covariant derivatives of tensors or spinors of arbitrary
ranks can be defined and calculated in a similar way [30].

It is common to restrict the discussion to connections
for which the covariant derivations of scalar fields with
respect to different coordinates commute:

∇µ(Γ )∇ν(Γ ) (Φ) = ∇ν(Γ )∇µ(Γ ) (Φ) (24)

for any µ, ν = 0, 1, 2, 3 and an arbitrary scalar field Φ.
One says then that the connection is torsion-free and this
imposes that, in any coordinate system, the Γ ′s are sym-
metric in their lower indices:

Γ α
µν = Γ α

νµ. (25)

The connection can also be represented, given a met-
ric g, by another set of functions, defined by [23]:

Γµ,αβ = gµνΓ ν
αβ , (26)

which will be used later on. Note that these functions de-
pend on both the connection and the metric.

The affine connection can be used to define a ten-
sor called the curvature tensor of the connection or the
Riemann tensor. The components of this tensor are, in an
arbitrary coordinate system:

Rα
µβν =

∂Γ α
νµ

∂xβ
−

∂Γ α
βµ

∂xν
+ Γ α

βσΓ σ
νµ − Γ α

νσΓ σ
βµ. (27)

To be noted is that this tensor depends only on the func-
tions Γ µ

αβ and not explicitly on the metric g. Only if the
connection and the metric are related does the Riemann
tensor become a functional of the metric.

The Riemann tensor can be contracted to give the
Ricci tensor, also called the curvature tensor of space-time,
the components of which are:

Rµν = Rα
µαν . (28)

The use of the same letter to denote the Riemann and the
Ricci tensors is naturally misleading but has been con-
served in accordance with what is now common usage in
relativistic physics.

In this article, we will consider that both the metric
tensor and the connection code for gravitational effects.
The fundamental equations of General Relativity are thus
the evolution equations for the metric and the connection
functions.

4.1.2 The fundamental equations of General Relativity

The first of these equations expresses the fact that the
metric g is covariantly constant:

∇µ(Γ ) gαβ = 0 (29)

for any µ, α, β = 0, 1, 2, 3. This implies that the Γ ’s asso-
ciated to the connection can be expressed in terms of the
metric tensor and its partial derivatives [30]:

Γ α
µν =

1
2

gαβ

(
∂gβν

∂xµ
+

∂gβµ

∂xν
− ∂gµν

∂xβ

)
. (30)

Such a connection is called a metric connection and the
expressions on the right-hand side of the preceding equa-
tion are called the Christoffel symbols of the metric g.
Equation (30) thus states that the Γ ’s associated to a
connection compatible with a given metric6 are identical
to the Christoffel symbols of this metric.

The functions Γµ,αβ associated to the same connection
are:

Γµ,αβ =
1
2

(
∂gµα

∂xβ
+

∂gµβ

∂xα
− ∂gαβ

∂xµ

)
. (31)

Equation (31) will be of crucial importance in the aver-
aging procedure for Einstein’s gravitational field. Let us
note, en passant, that the Ricci tensor of a metric connec-
tion is symmetric in its two indices.

The second basic equation of General Relativity is
called Einstein’s equation. It is usually interpreted by
stating that the total energy-momentum tensor T of
the matter present in space-time is the ‘source’ of
gravitational phenomena; even though the mental im-
age generated by this statement is basically correct,
the use of the term ‘source’ is however misleading; in-
deed, when one considers General Relativity as a gauge
theory [9,10,29], the tensor T which appears in Ein-
stein’s equation plays structurally a very different role
from the role played by the current j in Maxwell’s
electromagnetism. The stress-tensor which appears in
Einstein’s equation is best defined through a varia-
tional approach as the partial derivative of the matter
action with respect to the metric tensor g [30]. Since g

6 A connection will be called compatible with a given met-
ric g if the scalar product gµνvµwν of two vectors v and w re-
mains unchanged if one parallel-transports these vectors along
any curve.
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is naturally a purely covariant tensor, the stress tensor
appears naturally in Einstein’s equation through its con-
travariant components T µν ; Einstein’s equation equals
this tensor T to a combination E(∇(Γ ), g) of the Ricci
tensor and of the metric tensor called the Einstein tensor
and thus takes the form:

Eµν(∇(Γ ), g) ≡ Rµν − 1
2

Rgµν = χgµαgνβ T αβ. (32)

In this equation, R stands for the trace of the Ricci tensor
and χ is a fundamental constant of nature, the precise
expression of which depends on the chosen system of units.
An exact and direct consequence of Einstein’s equation is:

∇νT µν = 0, (33)

which expresses the so-called conservation of energy and
momentum. Hereafter, the traditional notation G will also
be used for the Einstein-tensor E(∇(Γ ), g).

4.2 The matter

The tensor T itself is the sum of various contributions
corresponding to the different types of matter present in
space-time. Each of these contributions generally depends
also on the metric g. To keep the discussion focused, two
kinds of matter only will be considered in the main part
of this article; possible extensions will be discussed in the
conclusion.

The first kind of matter which will be envisaged is
an electromagnetic field. As in flat space-time, an elec-
tromagnetic field is traditionally represented by a 4-
potential Aµ [30]. The tensor F is now defined by:

Fµν = ∇µAν −∇νAµ; (34)

however, because of (23) and (25), definition (34) comes
down to (1). The first pair of Maxwell’s equation is again
a direct consequence of (34) and reads now:

∇[αFµν] = 0. (35)

The second pair relates F to the charge 4-current j and
takes the form:

gνα∇αFµν = −4πgµνjν . (36)

As in flat space-time, the second pair of Maxwell’s equa-
tions implies charge conservation:

∇µjµ =
1√

−det g
∂µ

(√
−det gjµ

)
= 0. (37)

The usual expression for the stress-energy tensor of the
electromagnetic field in curved space-time reads:

T (A, g)µν =
1
4π

(
1
4

FαβFγδg
αγgβδgµν − FβαFγδg

βµgαδgγν

)
, (38)

where care has been taken to make explicit the dependence
of T (A, g)µν on both F and g. The dynamics of A and the
expression (38) can be derived directly from a standard
variational approach, to be found e.g. in [23] and [30].

Another form of matter traditionally coupled to Ein-
stein’s gravitational field is the so-called perfect fluid,
which is represented by an energy-momentum tensor T
of the form:

T µν = wuµuν − pgµν , (39)

where u represents the local 4-velocity of the fluid, w
stands for its enthalpy density and p is the pressure field.
Such a perfect fluid is also endowed with a conserved cur-
rent J representing matter conservation [18]:

Jµ = nuµ, (40)

where n stands for the scalar particle density.
A perfect fluid can also have charges and be coupled

to other interactions than gravity; only electromagnetic
interactions will be considered in this article. If a perfect
fluid is charged, its charge 4-current j is proportional to J ,
jµ = qJµ, the ratio q representing the charge of the par-
ticles which constitute the fluid.

To make this study more specific, consider the classi-
cal example [1] of a charged perfect fluid evolving under
the action of its own gravitational and electromagnetic
fields7. The equations of motion for the system are, first,
Maxwell’s equations (35) and (36), which are the equa-
tions of motion for the electromagnetic field; second, rela-
tion (30), which ensures that the connection is compatible
with the metric, and also Einstein’s equation (32), with
T µν = T (A, g)µν + T µν :

Gµν = Eµν(∇(Γ ), g) = χgµαgνβ

[
T (A, g)αβ + T αβ

]
,

(41)
T (A, g) and T being respectively given by (38) and (39).
The final equations of motion are the equations of motion
for the perfect fluid itself. The first of these expresses the
conservation of the particle current J :

∇µJµ =
1√

−det g
∂µ

(√
−det gJµ

)
= 0; (42)

it implies automatically the conservation of the charge 4-
current j. The second equation can be condensed into [30]:

∇νT ν
µ = Fµνjν , (43)

which is actually a direct consequence of (41) and (36). It
is also an obvious generalization of (9) to curved space-
time. The dynamics of a perfect fluid and the expres-
sion (39) for its stress-tensor can be derived from various
variational principles; this is discussed in [7].

To the equations of motion must be added a so-called
equation of state, which links the enthalpy density w and

7 The more general case of several charged perfect fluids in-
teracting with self-consistent gravitational and electromagnetic
fields can be treated as a straightforward extension of the sit-
uation considered here and is of constant use in (plasma) As-
trophysics and Cosmology.



264 The European Physical Journal B

the pressure p to the density n. In this article, the expres-
sion “equation of state” is used to designate something
more general than what is commonly called equation of
state. For example, (39) is considered to be part of the
equation of state of a perfect fluid. In practice, this slightly
uncommon usage should not generate any misunderstand-
ing.

The six equations of motion are all non-linear. Their
averaging is therefore not trivial and is the central topic
of this article, fully discussed in the next section.

5 Definition of the mean gravitational
and electromagnetic fields in curved
space-time

5.1 Definition of the mean metric, of the mean
connection and of the mean 4-potential

Let us consider a statistical ensemble of metrics and con-
nections defined on space-time. As mentioned in Section 2,
these ensembles are ensembles of histories, and not en-
sembles of states. The members of the ensemble will be
labelled by the symbol ω ∈ Ω; we do not specify Ω since
this is not necessary for what follows. To each ω corre-
sponds a certain metric tensor g(ω), the connection Γ (ω)
compatible with this metric, a certain electromagnetic
field A(ω) and a certain perfect fluid flow. For each ω,
all these fields satisfy the equations presented in the pre-
ceding section. All members of the ensemble correspond to
the same macroscopic history of the space-time manifold,
in particular to a same given mean metric ḡ, mean connec-
tion Γ̄ and mean electromagnetic field Ā. The problem is
to define the mean quantities as averages over the statis-
tical ensemble and to deduce from the retained definitions
the evolution equations for the mean fields. In what fol-
lows, we will suppose that all manifolds in the ensemble
admit a common atlas i.e. we can find a set of coordinate
systems common to all members of the ensemble.

Equation (30) is somewhat simpler than the others be-
cause it only involves the metric and the connection. We
will start therefore by examining if it is possible to find a
definition for the mean metric and the mean connection
which ensures that these quantities are compatible.

Since equation (30) is non-linear, it is obvious that
defining the mean metric to be the average of the metric
and the mean connection to be the average of the con-
nection does not solve the problem. In other words, the
average of the metric and the average of the Christoffel
symbols are not generally compatible. Worse than that,
the average of the connection does indeed furnish a con-
nection on space-time, but there is no reason why this
average should be compatible with any metric. The solu-
tion to the problem is given by equation (31), which is
actually a linearization of (30). Indeed, (26) is linear in
both g and Γµ,αβ . This suggests that the mean metric is
the average of the metric:

ḡµν(x) = 〈gµν(x, ω)〉 (44)

and that:
Γ̄µ,αβ(x) = 〈Γµ,αβ(x, ω)〉 . (45)

These definitions naturally ensure that the mean con-
nection ∇(Γ̄ ) is compatible with the mean metric and,
assuming the mean metric ḡ to be invertible, the usual
functions representing the mean connection are then given
by (see (26)):

Γ̄ µ
αβ(x) = ḡµν(x)Γ̄ν,αβ(x), (46)

with:
ḡµρḡ

ρν = δν
µ. (47)

Using (45), this can be rewritten as:

Γ̄ µ
αβ(x) = ḡµν(x) 〈Γν,αβ(x, ω)〉 (48)

or:
Γ̄ µ

αβ(x) = ḡµν(x)
〈
gνρ(x, ω)Γ ρ

αβ(x, ω)
〉

. (49)

Let me stress again that, the Γ̄ µ
αβ ’s being not the aver-

ages of the original Γ µ
αβ ’s, the mean connection cannot be

considered as the average of the original connection.
The choice of definition (45) is supported by the inves-

tigation of the equation of motion for test matter present
in space-time. This will also yield a natural definition for
the mean electromagnetic 4-potential Ā.

Equation (43) has been derived for a perfect fluid but
it is actually valid for any kind of charged matter inter-
acting solely with Einstein’s gravitational field and the
electromagnetic field F . This equation can be rewritten
as [23]:

1√
−det g

∂ν

(√
−det g T ν

µ (ω)
)
|x

=

Γβ,αµ(x, ω)T αβ(x, ω) + Fµν(x, ω)jν(x, ω), (50)

where T and j stand for an arbitrary stress-energy ten-
sor and an arbitrary 4-current density. Equation (50) is
the curved space-time generalization of (9). (50) expresses
that the total 4-momentum of charged matter is not a con-
served quantity and that it varies because the matter ex-
changes momentum with the gravitational field (first term
on the right-hand side of (50)) and with the electromag-
netic field (second term on the right-hand side of (50)).

Let us now consider the motion of test matter under
both gravitational and electromagnetic fields. One can
write, with the notations introduced previously in Sec-
tion 3.2 (see (12) and (11)):

1√
−det g

∂ν

(√
−det g T ν

µ (ω)
)
|x

=

Γβ,αµ(x, ω)θαβ(x) + Fµν(x, ω)ιν(x). (51)

This supports definitions (44) and (45); it also suggests:

F̄µν(x) = 〈Fµν(x, ω)〉; (52)

because of equation (34), which actually reduces to (1),
this leads to the definition:

Āµ(x) = 〈Aµ(x, ω)〉. (53)
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These definitions of the mean 4-potential and of the mean
tensor F̄ ensure that the first pair of Maxwell’s equa-
tions, equation (35), is automatically verified; this is so
because (35) actually reduces to (2).

One is also led naturally to definitions (44) and (45)
for the mean metric and connections by investigating the
propagation of a test electromagnetic field in curved space-
time. Indeed, for a Maxwell field interacting only with Ein-
stein’s gravitational field, one can write [23], with obvious
notations:

1√
−det g

∂ν

(√
−det g T ν

µ (A)(ω)
)
|x

=

Γβ,αµ(x, ω)θαβ(A)(x), (54)

which leads to the same definition of the mean gravita-
tional field.

5.2 Some general comments

Some very general comments and a partial summing up
are in order before establishing the equations of motion
verified by the mean fields.

Our definitions of the mean gravitational and electro-
magnetic fields can receive two, very different motivations.

The first one is rather formal. The retained definitions
are indeed the only ones which ensure that the mean con-
nection is compatible with a metric and that the mean
tensor F̄ does derive from a 4-potential Ā.

The second motivation comes from the analysis of the
average motion of test matter in the gravitational and elec-
tromagnetic fields. The 4-momentum of a point particle is
naturally a cotangent vector [18]; the equation of motion
of a point mass is thus best represented by a differential
equation fixing the variation of the 4 covariant momen-
tum components. The generalization to continuous media
physics and to field theory of the 4 covariant momentum
components of a point-like particle is the set of the stress-
energy tensor’s mixed components [23]; and one can read
off the expression for the fields from the differential equa-
tion (50) expressing the non-conservation of T ν

µ because
of its interactions with these fields.

To obtain from such an analysis the same expression
for the mean fields as the ones already obtained via the
other route, it is necessary to represent test matter by a
charge-current (contravariant) 4-vector jµ and by the con-
travariant components T µν of T . Both choices are best un-
derstood from a variational point of view. The 4-current j
is usually defined as the functional derivative of the action
with respect to the 4-potential A [3]. The gauge struc-
ture [9] of Maxwell’s theory dictates that A is naturally
a field cotangent to space-time. The 4-current j therefore
appears as a vector field tangent to space-time represented
by its contravariant components jµ. These represent the
source of the electromagnetic field and are also used to
probe the field; hence the last term in (51).

As mentioned above, the stress-tensor T does not have
the same status as j i.e. it is not the derivative of the action
with respect to the connection Γ . It is nevertheless at the

origin of gravitational phenomena as described by Gen-
eral Relativity. As such it is best defined as the functional
derivative of the action with respect to the metric ten-
sor [30] and appears therefore naturally in Einstein’s equa-
tion through its contravariant components T µν. These
components are thus the natural probes for the gravita-
tional field; they are used as such in (51).

6 The equations of motion for the mean
fields and their interpretations

6.1 The equations of motion

Two equations have already been determined. The first
one expresses the compatibility of the mean connection
with the mean metric:

∇α(Γ̄ ) ḡµν = 0 (55)

for all α, µ and ν. The other one states that the mean
tensor F̄ derives from the mean 4-potential Ā:

F̄µν = ∇µ(Γ̄ )Āν −∇ν(Γ̄ )Āµ (56)

and one has therefore:

∇[α(Γ̄ )F̄µν] = 0 (57)

for all α, µ and ν. This comes from the extact cancellation
of all non-linear terms in both (56) and (57).

Let us now derive Einstein’s equation for the mean
gravitational field. One can define:

Ḡµν = Eµν(∇(Γ̄ ), ḡ) = R̄µν − 1
2

R̄ ḡµν , (58)

the Einstein tensor associated to the mean metric and con-
nection. This tensor is generally different from the average
〈G(ω)〉. Introducing:

∆Gµν(x) = 〈Gµν(x, ω)〉 − Ḡµν(x), (59)

one can write:

Ḡµν + ∆Gµν = χ〈gµα(ω)gνβ(ω)T αβ(ω)〉. (60)

Let us define the mean stress-tensor T̄ by:

T̄ αβ = ḡαµḡβν

[
〈gµρ(ω)gνσ(ω)T ρσ(ω)〉 − 1

χ
∆Gµν

]
;

(61)
one can then write:

Ḡµν = Eµν(∇(Γ̄ ), ḡ) = R̄µν − 1
2

R̄ ḡµν = χḡµαḡνβ T̄ αβ,

(62)
which has exactly the same form as (32). As a conse-
quence, the mean stress-tensor T̄ is conserved:

∇µ(Γ̄ )T̄ µν = 0. (63)
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The second pair of Maxwell’s equation for the mean
electromagnetic field can be obtained in a similar manner.
One can introduce:

∆jµ(x) = 〈gνα(x, ω)(∇α(Γ (ω))Fµν(ω))|x〉
− ḡνα(x)

(
∇α(Γ̄ )F̄µν

)
|x (64)

and define the mean charge 4-current j̄ by:

j̄µ = ḡµν〈gνα(ω)jα(ω)〉 − ∆jµ, (65)

so that:
ḡνα∇α(Γ̄ )F̄µν = ḡµν j̄ν . (66)

This is naturally the second pair of Maxwell’s equations;
(66) implies that j̄ is strictly conserved:

∇µ(Γ̄ )j̄µ = 0. (67)

Let us note that ∆j vanishes identically if g(ω) does not
depend explicitly on ω i.e. if the statistical average is done
on a fixed curved space-time background.

Let us now investigate in more details some conse-
quences of the preceding equations if the matter present
in space-time before averaging appears as a charged per-
fect fluid interacting with a self-consistent electromagnetic
field.

Let us assume that j̄ is time-like i.e. ḡµν j̄µj̄ν > 0. One
can then define a charge 4-velocity uµ by:

uµ =
j̄µ

(j̄ · j̄)1/2
(68)

and a density n by:

n =
1
q

(j̄ · j̄)1/2
, (69)

where q is the charge of the point-particles constituting the
fluid. But, for a perfect fluid, it is possible to define an-
other mean-density and mean-velocity. These are obtained
by suitably averaging the matter 4-current J . Indeed, be-
cause J(ω) is conserved for each ω, one can define:

J̄µ =
1√

−det ḡ

〈√
−det g(ω)Jµ(ω)

〉
, (70)

where det ḡ < 0 has been assumed. J̄ is automatically
time-like; as j̄, it is also conserved. Indeed, one can write:

∇µ(Γ̄ )J̄µ =
1√

−det ḡ

∂

∂xµ

(√
−det ḡJ̄µ

)

=
1√

−det ḡ

∂

∂xµ

〈√
−det g(ω)Jµ(ω)

〉

=
1√

−det ḡ

〈
∂

∂xµ

√
−det g(ω)Jµ(ω)

〉

=
1√

−det ḡ

〈√
−det g(ω) (∇µ(Γ (ω))Jµ(ω))

〉

= 0, (71)

since J(ω) is conserved for each ω.
J̄ can be associated to a 4-velocity U and a particle

density N respectively defined by:

Uµ =
J̄µ

(J̄ · J̄)1/2
(72)

and
N = (J̄ · J̄)1/2

. (73)

In general, J̄ is not identical to j̄/q and, therefore, U is
different from u and N is different from n. One can always
define a mean stress-tensor T̄ by:

T̄ µν = T̄ µν − T (Ā, ḡ)µν (74)

and T̄ will automatically verify the equivalent of (43):

∇ν(Γ̄ )T̄ ν
µ = F̄µν j̄ν ; (75)

but T̄ will generally not have a simple expression in terms
of u, n, U and N . In particular, T̄ will generally not take
the simple form characteristic of a perfect fluid. The pre-
cise form of T̄ depends on the physics happening at the
scales which have been averaged upon and, therefore, of
the precise problem under consideration. No general con-
clusion can be made at this point.

6.2 Possible interpretations and some consequences
of the results

Equations (61) and (65) show that the ‘small’ scales have
a non-trivial effect on the large ones and modify in a
possibly very complicated manner the equation of state
of the matter present in space-time. In the presence of
a gravitational field, the equation of state is thus gener-
ally scale-dependent. The situation is actually even more
intricate. Indeed, the mean stress-tensor T̄ is made up
of two apparently very different contributions. The first
one is directly linked to a mean value involving the ‘orig-
inal’ stress-tensor T , while the other one involves a seem-
ingly purely geometrical term ∆G. This suggests that the
separation between matter and gravitational field is it-
self scale-dependent, even at the level of non-quantum
classical General Relativity. There is another interesting
interpretation of equation (61). Suppose we have experi-
mental or observational access to 〈gµρ(ω)gνσ(ω)T ρσ(ω)〉.
Suppose we do not want to make the notion of mat-
ter scale-dependent but declare, for example, that points
where 〈gµρ(ω)gνσ(ω)T ρσ(ω)〉 vanish represent the ‘vac-
uum’. At such points, T̄ does not vanish and −1/χ∆G at
these points might thus be considered the stress-energy
of the vacuum. This point of view might appear more
physical, especially in a cosmological context [22], where
an estimate of 〈gµρ(ω)gνσ(ω)T ρσ(ω)〉 can probably be ob-
tained observationally [21,28]. The other interpretation
however seems both more general and natural, at least
from a purely theoretical stance.

Similar comments can be made upon equation (65): the
mean charge 4-current j̄ is also made up of two contribu-
tions. The first one is an average of a quantity involving
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directly j; but the term ∆j depends explicitly only on
the gravitational and electromagnetic fields, and not the
current-distribution. The separation between electromag-
netic field and electric charge current is therefore scale-
dependent too. One can also interpret the −∆j contribu-
tion to j̄ as a charge 4-current of the ‘vacuum’. Again, this
point of view seems less general than the preceding one.

Let us also note that both effects under discussion dis-
appear if the statistical averaging is made over an ensem-
ble where the metric is constant i.e. independent on ω.

A final important comment, concerning possible cos-
mological applications. Let us suppose that, in a given
reference frame, what happens at the scales which are av-
eraged upon is sufficiently ‘random’ to make the averaged
physics spatially homogeneous and isotropic. This is of
course exactly the situation encountered in modern cos-
mology [27,28]; the Universe is certainly not homogeneous
nor isotropic on ‘small’ scales; but there apparently ex-
ists a reference-frame, the so-called cosmic rest-frame, in
which the Universe is homogeneous and isotropic on scales
comparable to the Hubble-length.

Let this particular reference frame be represented by
a 4-velocity V µ, normed to unity. Since the description
at large scales is supposed to be homogeneous and
isotropic, the mean stress-energy tensor necessarily takes
the form [16]:

T̄ µν = w̄V µV ν − p̄ḡµν . (76)

If 〈gµρ(ω)gνσ(ω)T ρσ(ω)〉 is one of the fields accessible
to observation, it is part of what I called ‘the averaged
physics’ and therefore, by hypothesis, takes a form similar
to T̄ :

〈gµρ(ω)gνσ(ω)T ρσ(ω)〉 = WV µV ν − P ḡµν . (77)

A direct consequence of both preceding equations is that
the tensor ∆G also takes the simple perfect-fluid form:

∆Gµν = wvacV
µV ν − pvacḡ

µν , (78)

where the notation reflects the fact that, as already men-
tioned, cosmology would interpret wvac and pvac as the
enthalpy-density and pressure of the ‘vacuum’. There does
not seem however to be any constraints on the values and
signs of these quantities; in other words, there does not
seem to be any constraint on the equation of state of the
‘vacuum’ in this approach. The natural question raised by
these comments concerns the cosmological constant i.e.
can one have ∆G = Λg? Further work is obviously needed
to answer this very interesting question.

7 Conclusion

7.1 Summary

The general relativistic equations fixing the evolution of
the gravitational field and of the matter present in space-
time are non-linear. Their averaging is therefore not triv-
ial. In this article, I have proposed a general procedure
which permits to construct mean gravitational and mat-
ter fields as averages over statistical ensembles of space-
time histories. The procedure ensures that the mean grav-
itational and electromagnetic fields obey the equations

of General Relativity and Maxwell’s equations in curved
space-time, exactly as the unaveraged quantities. The
mean metric (in purely covariant form) turns out to be the
average of the original metric and the mean connection is
the connection compatible with the mean metric. These
definitions for the mean gravitational field have been given
an interpretation in terms of mean evolution experienced
by test systems.

The mean electromagnetic field has also been defined.
The mean (covariant) 4-potential is the average of the
original (covariant) 4-potential and the mean electromag-
netic tensor F̄ (in purely covariant form) is then the av-
erage of the original electromagnetic tensor F . These def-
initions have also been given an interpretation in terms of
mean motion experienced by test current distributions.

The mean gravitational and electromagnetic fields
obey equations that are similar to those obeyed by the
unaveraged field. The price to pay for this is a change in
the equation of state for matter (Maxwell’s field excepted).
In particular, matter which can be modelled as a perfect
fluid before the averaging procedure does not generally ap-
pear as a perfect fluid after the averaging procedure has
been applied. Things are actually even more complex. The
mean stress-energy tensor is made up of two contributions.
One is the average of a quantity which depends on both
the unaveraged metric and the unaveraged stress-energy
tensor. The other contribution, however, appears to be a
‘purely geometrical’ quantity, involving explicitly only the
gravitational field. This can be interpreted in two different
manners. A first possibility is to consider that the separa-
tion between the gravitational field and the matter which
curves space-time is scale-dependent. This seems to be
the most general point of view. The other interpretation
is only useful if one has experimental or observational ac-
cess to the first contribution to the mean stress-tensor, i.e.
the one which depends directly on the unaveraged stress-
energy tensor. It then makes sense to interpret this term
as the only one associated to ‘real’ matter and to interpret
the other contribution as a vacuum stress-energy tensor.
This kind of interpretation is perhaps most useful in cos-
mology [21,28].

Similar remarks apply to the electric charge 4-current.
The mean 4-current has two contributions. One is the av-
erage of a quantity which depends directly on the unaver-
aged 4-current. The other term however depends explicitly
only on the gravitational and electromagnetic fields. Here
again, one can say that the separation between electro-
magnetic field and charge current is scale-dependent or
introduce the concept of a charge 4-current associated to
the vacuum.

Both these new effects are due to the non-linearity of
the evolution equations. They disappear if the metric of
space-time is the same for all histories in the statistical
ensemble.

Before discussing some directions in which this work
can be developed, let me point out one of its hith-
erto unmentioned theoretical assets. The whole averag-
ing procedure presented in this article can be viewed as a
machine to produce exact unknown solutions to the
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Einstein-Maxwell system of equations from any given
known solution; these new solutions describe in a coarse-
grained manner the same ‘physics’ as the known ones, but
they are nevertheless new. The study of some of these new
solutions (for example, coarse-grained Reisner-Nordström
black-holes) should prove physically interesting and may
also contribute to a better understanding of the averaging
procedure itself.

As a conclusion to this summary, it is interesting to
mention that the philosophy underlying the definition of
the mean stress-energy tensor T̄ presents some common
points with the ideas governing the construction of an ef-
fective stress-energy pseudo-tensor for the gravitational
field itself. Let me be more precise about this.

It has been argued in Section 5 that the mean gravi-
tational field is represented by the metric ḡ which is the
mean value of the original metric g(ω). One is therefore
interested in the Einstein tensor Ḡ associated to this met-
ric and to the connection ∇(Γ̄ ) compatible with it. This
tensor naturally does not coincide with the average of
the original Einstein tensor G(ω) which appears natu-
rally upon averaging the original Einstein’s equation. One
therefore singles out the contribution of Ḡ to the aver-
aged Einstein’s equation and all the other contributions
are transferred to the right-hand side of the equation and
define together the mean (or effective) stress-energy ten-
sor T̄ .

In a similar spirit, one can single out the contribution
to Einstein’s equation linear in the metric and all other
terms grouped together then define an effective stress-
energy pseudo-tensor for the gravitational field [23,26].
All this being said, there are naturally important differ-
ences between both procedures. Perhaps the most obvious
one is that the statistical averaging defined in this article
is a perfectly covariant procedure, as any statistical aver-
aging should be, whereas the definition of a stress-energy
pseudo-tensor for the gravitational field is not (and cannot
be) a covariant operation.

7.2 Comparison with previous work

As mentioned in the Introduction, several other ways of
averaging the geometry of space-time have already been
proposed in the literature; let me now discuss at some
length at least the most recent and/or general of these
other approaches and compare them with the present
work.

References [4,5,12–14,20] all belong to the same fam-
ily. Strictly speaking, references [4,5] do not belong to the
same group as [12–14,20], but both groups share suffi-
cient basic characteristics to make a common discussion
mandatory. First of all, the average procedure retained
by [4,5,12–14,20] is not a statistical averaging but a three-
dimensional spatial averaging. More importantly, the very
conception of the averaging procedure is tailor-made for
the Friedmann-Robertson-Walker (FRW) cosmologies and
an extension to other space-times seems out of the ques-
tion. In particular, none of these references proposes a
general definition of the mean metric or of the mean con-

nection, which can then be applied to particular space-
times. Indeed, only the mean scale-factor of a FRW uni-
verse is introduced, and it is defined only in terms of the
mean energy density of the universe, as measured on three-
dimensional submanifolds of space-time where ‘space’ ap-
pears to be homogeneous and isotropic. All this is made
with the aid of the so-called 3+1 formalism, and no (foli-
ation independent) manifestly covariant treatment is pro-
posed.

Let me characterize further some individual references
in both families. Of the three works by Futamase, [14]
is clearly the most developed one. Unfortunately, it only
deals with vanishingly small perturbations to the FRW
universe. The work of Kasai [20] substantially lifts this
constraint, but it is still only applicable to FRW cosmolo-
gies. Moreover, the only matter envisaged in [20] is dust.

Reference [4] again deals only with dust. The formal-
ism is extended to perfect fluid cosmologies in [5]; the
case where the perfect fluid is made up of radiation is
discussed in Section 4.3 of [5], but an average electromag-
netic 4-potential is unfortunately not defined, and average
Maxwell equations are consequently not derived. More-
over, [5] suffers from all of the drawbacks mentioned ear-
lier. In particular, reference [5] only defines the average of
scalar fields and does not shed any light on how to define
the average of general tensor fields (see Sect. 3.1 of [5]).

The framework introduced in the present work does
not suffer from the same limitations. Indeed, the defined
averaging procedure is based on the very general notion
of statistical ensembles, properly extended to take into ac-
count the gravitational degrees of freedom. The statistical
ensembles, being ensembles of space-times, are scalar and
the whole procedure is not only covariant, but also man-
ifestly covariant. The average metric, connection, curva-
ture tensor, stress-energy tensor and electromagnetic 4-
potential have all been defined in a very general context.
The average equations of motion for matter have been in-
vestigated and, in particular, Maxwell equations for the
mean electromagnetic field have been derived. Moreover,
the whole framework is applicable to arbitrary physical
situations, and not only to cases where the average space-
time is a FRW universe.

Let us now discuss reference [31]. This reference stands
on its own and is in many ways closer to the present
work than all the other references I have just discussed.
The introduced average procedure is admittedly not of
a real statistical nature, but it is a manifestly covari-
ant averaging over space-time domains of a given four-
dimensional (scalar) volume. This de facto makes the
whole framework applicable to arbitrary space-times, and
not to FRW cosmologies only. There is however a cru-
cial difference between [31] and the present work. At
the beginning of Section 4, reference [31] states: “The
average... of the microscopic Levi-Civita connection γα

βγ
is supposed to be Levi-Civita’s connection of the aver-
aged space-time8.” But the author does not justify this
supposition, never showing that it is reasonable and makes

8 Reference [31] uses the notation γ for the Christoffel sym-
bols, and not Γ .
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geometrical and/or physical sense. It is simply a supposi-
tion underlying the work presented in [31].

In Section 5.1 of the present work, I have proposed a
double argumentation leading precisely to the conclusion
that the mean (macroscopic) connection should not be
considered to be the average of the original (microscopic)
connection; in other words, the arguments presented in
Section 5.1 of this article go against the supposition which
serves as a basis to [31]. Since [31] does not justify this ba-
sic supposition, and thus provides no material which could
be considered as a counterargumentation to Section 5.1, I
think it warranted to say that the new approach proposed
in the present article is at least as physically meaningful
and justified as the older one developed in [31].

7.3 Possible extensions

I would like now to mention some possible and desirable
extensions to this work. The general averaging procedure
introduced in this article should be applied to cosmol-
ogy. What kind of equation of state for the vacuum (in
the sense discussed in Sect. 6.2) do realistic cosmologi-
cal models predict? This question will probably be best
answered numerically. In particular, is it possible, in the
light of the formalism introduced in the present article, to
interpret the non-vanishing of the cosmological constant
as a purely statistical effect?

Another point of possible interest. Unless one restricts
the discussion ab initio to ensembles corresponding to
a macro-history whose macroscopic (mean) metric has
(+,−,−,−) signature, one might be confronted with a
mean metric with a signature different from (+,−,−,−).
In other words, the averaging does not generally con-
serve the signature. This suggests that the signature of
space-time might actually be scale-dependent. This could
of course have many interesting consequences which will
hopefully be explored in subsequent publications.

As could perhaps be expected, our definition of what
a mean gravitational field is also admits an interpretation
in terms of mean geodesic motion. This will be explored
separately in a forthcoming article.

Naturally, the work presented here should also be ex-
tended to include Klein-Gordon, Dirac and Proca fields as
possible matter in space-time; these should be considered
first as classical fields and then, if possible, as quantum
fields. Linked to such an extension is a complete presenta-
tion of the averaging procedure presented in this article in
group theoretical terms, viewing Einstein’s relativity as a
gauge theory. This will be done in a future paper and will
shed new interesting light on various topics which have
been just broached in the present publication. In a similar
vein, a good understanding of what a mean gravitational
field is should contribute to a better control of quantum
field theory on curved space-time backgrounds and might
even open new vistas on how General Relativity emerges
as a mean field theory from a purely quantum description
of gravitational phenomena.
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